Skip to main content

Neonatal hypoxia-ischemia induces dysregulated feeding patterns and ethanol consumption that are alleviated by methylphenidate administration in rats.

Author
Abstract
:

Impulsivity, as observed in patients diagnosed with Attention-deficit/hyperactivity disorder (ADHD), can induce dysregulated behaviors such as binge eating and drug addiction. We previously demonstrated that neonatal hypoxia-ischemia (HI) resulted in ADHD-like behaviors in rats and that methylphenidate (MPH) administration (the first therapeutic option for ADHD) reversed these deficits. Here, we aimed at investigating addictive-like behaviors, such as the reward-based feeding behavior (using the BioDAQ monitor) and ethanol consumption (using the IA2BC procedure) in adult animals subjected to neonatal HI and treated with or without MPH. Male Wistar rats were divided into four groups (n = 10-12/group): control saline (CTS), CTMPH, HI saline (HIS) and HIMPH. The HI procedure was conducted at postnatal day (PND) 7 and behavioral analyses between PND 60-90, in which MPH (2.5 mg/kg, i.p.) was administered 30 min prior to each behavioral evaluation (6 sessions in BioDAQ and 12 sessions in the IA2BC protocol). HI animals had a dysregulated feeding intake shortly after eating a small piece of the palatable diet, and MPH reversed this dysregulated pattern. However, when the palatable diet was freely available, MPH stimulated a higher intake of this diet in the first exposure day, and this effect was potentialized in HIMPH rats. Increased ethanol intake was observed in HI rats, and MPH administration alleviated this behavior; contrarily, MPH treatment in control rats induced an increase in ethanol consumption. The present findings give additional support to the relationship between neonatal HI and ADHD but the differential response to MPH in control or HI animals highlights the importance of avoiding indiscriminate use of MPH by healthy individuals.

Year of Publication
:
2022
Journal
:
Experimental neurology
Volume
:
353
Number of Pages
:
114071
ISSN Number
:
0014-4886
URL
:
https://linkinghub.elsevier.com/retrieve/pii/S0014-4886(22)00096-6
DOI
:
10.1016/j.expneurol.2022.114071
Short Title
:
Exp Neurol
Download citation